
System for RISC-V P Extension Instruction Names

John Hauser

February 5, 2025

Warning! This document is currently only a draft. The naming scheme described here
is liable to change before being accepted by the RISC-V International Association.

This document specifies a system of general rules for the construction of names of RISC-V instructions
added by the P extension.

In this naming system, the rules can differ somewhat for instructions that perform scalar functions
versus those that are packed-SIMD. The first rule therefore concerns the categorization of instructions
as either scalar or packed-SIMD :

Packed-SIMD versus scalar instructions: An instruction is packed-SIMD only if at least one
source operand is interpreted as an array of two or more data elemnts. When an instruction’s
operands are all interpreted as single data elements, the instruction is necessarily classified as
scalar.

After the introduction of some common rules for operation names, the subsequent section explains the
system for naming packed-SIMD instructions.

While there is value in instruction names being compact, the naming system here values readability
over brevity. Typing time, measured by number of characters, is not considered the most important
factor, especially for the more specialized instructions that are not likely to appear often in program
sources. Besides aiding comprehension, a more regular system for instruction names may also ease
the addition of new instructions in possible future extensions.

1

1 Elemental operation names

The functions of many instructions include common elemental operations such as addition and multi-
plication. Table 1 lists names used for some of these elemental operations. In the simple cases where
an instruction performs just a single elemental operation, the full instruction name may be just the
elemental name, like ADD or CLZ. More complex instructions may be defined as combinations of
elemental operations, with instruction names that contain within them one or more elemental names.

As noted in the table, some of these elemental names (AADD, CLZ, etc.) have precedents in existing
ratified RISC-V extensions.

The three-letter mnemonic ‘CLS’ was chosen for count leading redundant sign bits instead of
‘CLRS’ to better match the countls functions of technical report ISO/IEC TR 18037, Program-
ming languages: C: Extensions to support embedded processors.

Unlike the base RISC-V comparison instructions SEQ, SLT, etc., which have a result value of either 1
(true) or 0 (false), the mask-set operations of Table 1 are defined to set all bits of the result the same,
either all ones for true, or all zeros for false.

The RISC-V V extension has “mask set” instructions with names such as VMSEQ.VV (set if
equal), VMSLT.VV (set if less than), and VMSNE.VV (set if not equal). For each elemental
comparison, these instructions set an individual bit of a mask vector destination register to 1
for true or 0 for false. These instructions can be said to set “all result bits the same” for each
elemental comparison, taking into account that each elemental result is only a single bit. However,
while this is true enough, the affinity of the mask-set operations of Table 1 with these V-extension
instructions is really more in the purpose of the comparisons, to construct a mask vector for
subsequent instructions (vector or packed-SIMD).

For the “high multiplication” operation, MULH, if the widths of the two arguments are w and x bits
respectively, with w ≥ x, then the function result is defined to be the uppermost w bits of the full
(w+x)-bit product of the arguments. When the two arguments have equal width, w = x, this function
is the same as computed by instruction MULH of the M extension, i.e., the uppermost w bits of the
full 2w-bit product of the arguments (which can also be described as the full double-width product
shifted right by w bits).

The “Q-format” multiplication, MULQ, is similar to MULH, but is applicable only when the two argu-
ments have the same width and when both arguments are interpreted as signed values, not unsigned.
If both arguments are w bits wide, then MULQ computes the full double-width product shifted right
by w − 1 bits. If this result would be corrupted by overflow (possible only when multiplying two mini-
mum negative values −2w−1×−2w−1), then the result is usually saturated implicitly to the maximum
positive value, 2w−1 − 1. (In contrast, MULH and MULHR can never overflow.)

2

Name Precedent Function

AADD V averaging addition, (a+ b)/2
ABS common absolute value (giving unsigned result, not saturated)
ADD common addition
ASUB V averaging subtraction, (a− b)/2
CLS count leading redundant sign bits
CLZ Zbb count leading zero bits
DIF absolute difference, |a− b|
MAX common maximum
MIN common minimum
MSEQ V mask-set if equal (result value is all 1s or all 0s)
MSLT V mask-set if less than ”
MUL common multiplication (discarding upper bits as necessary)
MULH M high multiplication (discarding lower bits as necessary)
MULHR MULH with rounding
MULQ “Q-format” multiplication, (a× b)>>(width− 1)
MULQR MULQ with rounding
SABS saturating absolute value
SADD V saturating addition
SAT saturate to specified bit-width
SHA shift left or right, arithmetic (signed)
SHAR SHA with rounding
SLL I shift left, logical
SRA I shift right, arithmetic
SRAR SRA with rounding
SRL I shift right, logical
SSHA saturating SHA
SSHAR saturating SHA with rounding
SSLA saturating shift left, arithmetic (signed)
SSUB V saturating subtraction
SUB common subtraction
WADD V widening addition (double-width result)
WMUL V widening multiplication ”
WSLA widening shift left, arithmetic (signed) ”
WSLL widening shift left, logical ”
WSUB V widening subtraction ”
NCLIP V narrowing shift right and saturate (double-width input)
NCLIPR NCLIP with rounding ”
NSRA V narrowing shift right, arithmetic ”
NSRAR NSRA with rounding ”
NSRL V narrowing shift right, logical ”

Table 1: Names for some elemental operations, in alphabetical order.

3

2 Combining and augmenting operation names

Many P-extension instructions perform a chained sequence of operations, the most common being
versions of multiply-add, a multiplication followed by an addition or subtraction. A general rule
applies to the names of such instructions:

Operation chains: When an instruction performs a chained sequence of operations, the instruction
name usually contains names for the individual operations in left-to-right, first-to-last order:
⟨op1 ⟩ ⟨op2 ⟩

Some examples of scalar (non-SIMD) instructions that perform chained operations are:

MHRACC = MHR (high multiplication with rounding, first op) + ACC (accumulate, second op)
WADDA = WADD (widening addition, first op) + A (accumulate, second op)

The names used for the component operations in a chain may be taken verbatim from Table 1, or they
may be alternative or abbreviated names following additional rules. In the two examples above, only
one of the four component names is directly from Table 1 (‘WADD’, but not MHR’, ‘ACC’, or ‘A’).
The other three are explained below.

The abbreviation ‘MHR’ in place of ‘MULHR’ comes from this rule:

Abbreviation of MUL in chains: When a chain of operations includes multiplication, ‘MUL’ is
usually abbreviated as just ‘M’, so MUL, MULH, MULHR, MULQ, MULQR, or WMUL is
denoted by ‘M’, ‘MH’, ‘MHR’, ‘MQ’, ‘MQR’, or ‘WM’, respectively.

The rule for abbreviating ‘MUL’ is consistent with existing practice for the F and V extensions,
which define instructions such as FMADD.S (floating-point multiply-add, single-precision) and
VMACC.VV (vector multiply-accumulate, vector-vector), with the multiplication being represented
by just the letter ‘M’.

An accumulate operation in a chain is defined as an addition of a computed value with the previous
value of the instruction’s destination operand. An accumulate operation is always the last in a chain.
If the destination operand is twice as wide as the value being added to it, then the operation is called
a widening accumulate, similar to a widening addition. The following rule applies to instructions that
accumulate:

Accumulate operations: In an instruction name, an accumulate operation is usually abbreviated
simply by the letter ‘A’, or by ‘WA’ for a widening accumulate. However, if the operation chain
consists only of a multiplication and an accumulate (two operations total), then the multiplication
gets abbreviated by its usual rule, and the accumulate is denoted in longer form as ‘ACC’ or
‘WACC’.

Thus, the combination of widening addition + accumulate is ‘WADDA’, but multiplication + accu-
mulate is ‘MACC’, not ‘MA’ or ‘MULA’.

Keeping with existing RISC-V convention, unsigned operands are usually indicated by the letter ‘U’:

Signedness of operands/operations: When the signedness of values (signed versus unsigned) mat-
ters, then an instruction’s operands are normally interpreted as signed by default. If operands
should instead be considered unsigned, and this fact is not indicated in some other way, then the

4

instruction name may have the letter ‘U’ suffixed to the operation chain: ⟨op-chain⟩ U. If the
first source operand should be interpreted as signed and the second operand unsigned, then the
instruction name may have ‘SU’ suffixed to the operation chain: ⟨op-chain⟩ SU.

Suffixing ‘U’ has many obvious precedents for RISC-V: SLTU, MULHU, DIVU, etc. The ‘SU’ suffix
applies most often to multiplications, as in instruction MULHSU of the M extension.

3 Conventions for packed-SIMD instruction names

3.1 Basic packed-SIMD instructions

The most basic packed-SIMD instructions are those that subdivide the bits of their register operands
unambiguously into equal-sized lanes, and compute each lane’s result entirely independently of the
other lanes, all lanes in parallel. The names of instructions of this kind usually follow a common form:

Basic packed-SIMD instructions: If a packed-SIMD instruction has operands that are all single
registers, and if the instruction’s computation has the simple structure that each lane (whether
bytes, halfwords, or words) is entirely self-contained and not dependent on values from other
lanes, then the instruction name usually takes the regular form

P ⟨operations⟩ . ⟨S⟩

where ⟨operations⟩ indicates the per-lane computation and ⟨S⟩ is a letter for the element width,
‘B’ for byte, ‘H’ for halfword, or ‘W’ for word.

Some example names for basic packed-SIMD instructions are the following:

PADD.B = P ADD .B
PMULQ.H = P MULQ .H
PMULHSU.H = P MULH SU .H
PMAXU.B = P MAX U .B
PMHRACC.W = P {MulHR + ACC} .W

In each case, the specified computation (ADD, MULQ, etc.) is performed separately within each lane,
with lanes being bytes (‘.B’), halfwords (‘.H’), or words (‘.W’).

Note that instructions of this form with word elements (‘.W’) are possible only for RV64. Given
that each RV32 register can hold only one 32-bit word, word-width computations with single-register
operands are necessarily scalar instructions for RV32, not packed-SIMD.

3.2 Packed-SIMD instructions with a scalar second operand

In some cases, the second operand of a packed-SIMD instruction is a scalar value that is applied equally
to all lanes:

5

Packed-SIMD instructions with a scalar second operand: If the second operand of a packed-
SIMD instruction is a scalar value from a register, and the instruction otherwise acts as basic
packed-SIMD in all other respects, then the instruction name usually takes the form

P ⟨operations⟩ . ⟨S⟩ S

where the added final ‘S’ indicates that the second operand is a scalar.

Some examples of instructions with scalar second operands are

PADD.HS = P ADD .HS
PSLL.BS = P SLL .BS
PSSHAR.WS = P SSHAR .WS

Instruction PADD.HS, for instance, adds the value of the second source register to each halfword of
the first source register. For PSLL.BS and PSSHAR.WS, the shift distance is a scalar common to all
lanes.

3.3 Widening and narrowing packed-SIMD instructions

Some packed-SIMD instructions have double-width operands held in even-odd pairs of registers. For
widening packed-SIMD instructions, the source operands are all single registers (or immediates), and
only the destination is a register pair.

Widening packed-SIMD instructions: If the name of a packed-SIMD instruction includes an ex-
plicit widening operation such as WADD, WSUB, WMUL, or WACC, then usually the source
operands are single registers (or an instruction immediate) and the destination operand is im-
plicitly an even-odd register pair.

The following are some examples of widening packed-SIMD instructions:

PWADD.B = P WADD .B
PWSUBAU.H = P {WSUB + Accum} U .H
PWMACC.H = P {WMul + ACC} .H
PWSLL.BS = P WSLL .BS
PMQRWACC.H = P {MulQR + WACC} .H

For these instructions, the appearance of the widening operation in the name (WADD, WSUB, WMUL,
WSLL, WACC, or an abbreviation) is the indication that the destination is a register pair.

There are also narrowing packed-SIMD instructions, where the first source operand is a register pair
and the other operands are single registers (or immediates).

Narrowing packed-SIMD instructions: If the name of a packed-SIMD instruction includes an
explicit narrowing operation such as NSRL (narrowing shift right, logical) or NCLIP, then usually
the first source operand is implicitly an even-odd register pair, and the other source operand and
destination are single registers (or an instruction immediate).

These are examples of narrowing packed-SIMD instructions:

6

PNSRL.HS = P NSRL .HS
PNCLIPRU.BS = P NCLIPR U .BS
PNSRAR.HS = P NSRAR .HS

All of these examples have a scalar second operand specifying a shift distance. As with widening
instructions, the appearance of the narrowing operation in the name (NSRL, NCLIPR, NSRAR) is
the indication that the first source operand is a register pair.

3.4 Double-wide packed-SIMD instructions

In addition to widening and narrowing instructions, other double-wide packed-SIMD instructions take
even-odd register pairs for both source and destination operands.

Double-wide packed-SIMD instructions: For RV32, when all register operands of a packed-SIMD
instruction are even-odd register pairs (64 bits, sources and destination), then the instruction’s
suffix for element width has the form ‘.D ⟨S⟩’ instead of just ‘. ⟨S⟩’, the ‘D’ standing for double-
word and ⟨S⟩ being one of ‘B’, ‘H’, or ‘W’ as usual.

Some examples of RV32 double-wide packed-SIMD instructions are:

PADD.DH = P ADD .DH
PMSEQ.DB = P MSEQ .DB
PASUBU.DW = P ASUB U .DW

The same computation that PADD.H does in RV32 for two halfword lanes, PADD.DH does over four
halfword lanes (64-bit register pairs). PADD.DH is thus equivalent to two PADD.H instructions,
one for the even-numbered registers and the other for the odd-numbered registers. In the same way,
PMSEQ.DB is equivalent to two PMSEQ.B instructions, while PASUBU.DW is equivalent to two
scalar ASUBU instructions.

For consistency with ‘.DB’, ‘.DH’, and ‘.DW’, one might expect the names of regular RV32 packed-
SIMD instructions with single-register operands to have suffixes ‘.WB’ and ‘.WH’, with ‘W’ for
word. However, 32-bit word width is usually implicit for RV32, not explicitly indicated by the let-
ter ‘W’. Consider for example the basic addition instruction is ADD, not ‘ADDW’; etc. Likewise,
the names of RV64 packed-SIMD instructions with single-register operands do not have suffixes
‘.DB’, ‘.DH’, or ‘.DW’, because doubleword width is usually implicit for RV64 instructions.

Double-wide packed-SIMD instructions with a scalar second operand: The second operand
of an RV32 double-wide packed-SIMD instruction may be a scalar from a register. In that case,
the second source is a single register, not a register pair, and the instruction’s suffix has the
combined form ‘.D ⟨S⟩S’, where the ‘D’ stands for doubleword and the final ‘S’ indicates a scalar
second operand.

Examples of RV32 double-wide packed-SIMD instructions with a scalar second operand include:

PADD.DBS = P ADD .DBS
PSRL.DWS = P SRL .DWS
PSSHA.DHS = P SSHA .DHS

7

3.5 Mixed-width packed-SIMD instructions

Mixed-width packed-SIMD instructions: If a packed-SIMD instruction has operands that are
single registers, and if the elements taken from one or both source operands are narrower than
the widths of the computed result elements (such as halfword sources with word results), then
the instruction name may have two suffixes for element widths, in one of these forms:

P ⟨operations⟩ . ⟨S⟩ . ⟨T ⟩⟨n⟩ or P ⟨operations⟩ . ⟨S⟩ . ⟨T ⟩⟨n⟩⟨n⟩

In both cases, ⟨S⟩ specifies the dominant element width, ‘H’ for halfword or ‘W’ for word, while
⟨T ⟩ is a smaller width within the dominant element width, ‘B’ for byte or ‘H’ for halfword. The
dominant width is the width of the result elements that are written to the destination.

For the first form of instruction name, ending in only one ⟨n⟩, the elements from the instruction’s
first source operand are the same dominant width as the destination, and the sub-element width
denoted by ⟨T ⟩ applies only to the second source operand. The final component ⟨n⟩ is a digit
indicating the positions of sub-elements within the dominant elements. When the sub-elements
are half the size of the dominant elements (‘.H.B⟨n⟩’ or ‘.W.H⟨n⟩’), then ⟨n⟩ can be either ‘0’
or ‘1’, indicating respectively the bottom (least-significant) or top (most-significant) halves of
the dominant element positions. For suffix ‘.W.B⟨n⟩’, digit ⟨n⟩ can be any of ‘0’, ‘1’, ‘2’, or ‘3’,
selecting one of the four bytes within each word element.

For the second form of instruction name with two ⟨n⟩’s, only the destination operand has full-
width elements, while both source operands supply smaller sub-elements to the instruction. The
first ⟨n⟩ specifies the sub-element positions from the first source register, and the second ⟨n⟩ does
the same for the second source register.

The following are examples of instructions that extract half-size elements from the second source
operand, while the first source operand and destination both have the dominant element width:

PMULHSU.H.B0 = P MULH SU .H .B0
PMHACC.W.H1 = P {MulH + ACC} .W .H1

The first example performs high signed×unsigned multiplications (MULHSU) of 16-bit halfwords and
8-bit bytes, where the bytes are from the bottom halves of the halfwords of the second source operand.
The second instruction similarly performs high-multiply-accumulate of words times halfwords, taking
the halfwords from the top halves of the words of the second source operand.

In the next examples, half-size elements are taken from both source operands, and only the destination
has elements of the dominant width:

PMULU.H.B01 = P {widening MUL} U .H .B01
PMQRACC.W.H00 = P {MulQR + ACC} .W .H00

For instruction PMULU.H.B01, the multiplications are inherently widening because the source ele-
ments are bytes while the dominant element width is halfwords. As a general rule, in this situation,
the specified operation (or the first operation in a chain) implicitly widens to the dominant element
width.

On the other hand, the multiplications done by PMQRACC.W.H00 are not described above as widen-
ing, because a “Q-format” multiplication, MULQR, performs a function different than a widening
multiplication. The ‘MQR’ in the instruction name explicitly indicates that the lower bits of the full

8

32-bit products will be shifted off, with rounding, as specified in Section 1. To perform the same
function without shifting down the products, the correct instruction would be PMACC.W.H00, with
MULQR (‘MQR’) replaced by MUL (‘M’, implicitly widening).

3.6 Packed-SIMD instructions with horizontal addition/subtraction

A number of packed-SIMD instructions perform horizontal additions or subtractions, meaning ad-
ditions or subtractions across SIMD lanes. A major subcategory of these instructions first peform
element-wise multiplications and then add or subtract groups of the products across lanes.

Packed-SIMD instructions with horizontal add/subtract of products: When an instruction
performs packed-SIMD element-wise multiplications and then adds groups of products horizon-
tally (across lanes), these additions are indicated in the instruction name by ‘⟨n⟩ADD’, where
⟨n⟩ is the number of products being summed, such as ‘2ADD’ or ‘4ADD’. Similarly, when an in-
struction subtracts pairs of products horizontally, the subtractions are denoted in the instruction
name by ‘2SUB’.

Such horizontal reductions, whether by addition or subtraction, inherently reduce the number of
lanes by the specified factor ⟨n⟩, causing the element width for the computed result to grow by the
same factor. When the instruction performs ordinary multiplications, denoted in the instruction
name by the single letter ‘M’, then these multiplications are implicitly widening ones, generating
full-width products. In that case, it is the full-width products that are actually summed or
subtracted across lanes.

Some examples of packed-SIMD instructions that multiply and add/subtract the products horizontally
are:

PM2ADD.H = P {widening Mul + 2-ADD} .H
PM4ADDASU.B = P {widening Mul + 4-ADD + Accum} SU .B
PM2SUBA.W = P {widening Mul + 2-SUB + Accum} .W
PMQR2ADDA.H = P {MulQR + 2-ADD + Accum} .H
PM2WADD.H = P {widening Mul + 2-WADD} .H

Concerning instruction PMQR2ADDA.H, it was noted earlier that “Q-format” multiplications are
by definition not widening but rather always shift down their products as specified in Section 1.
Consequently, the subsequent 32-bit horizontal additions and accumulates (2-ADD + Accum, at twice
the element width of the source operands) have nearly 16 bits of headroom to avoid overflow.

The last example, PM2WADD.H, involves two widenings of element width, the first implicitly due to
the horizontal reduction by a factor of two, and the second explicitly due to the reduction additions
themselves (WADD). Because the additions explicitly widen also, the destination operand is an even-
odd register pair as explained in Section 3.3.

A different group of packed-SIMD instructions perform summations across all lanes without any mul-
tiplications.

Packed-SIMD instructions with full horizontal summation: For packed-SIMD instructions
that sum values across all lanes, the horizontal sum may be denoted in the instruction name
by ‘REDSUM’ for reduction sum, or, if the horizontal sum is part of a chain of operations, by
the shorter abbreviation of just ‘SUM’. The use of the name ‘REDSUM’ or ‘SUM’ indicates an

9

explicit intention to sum across all lanes, not just by smaller groups of elements as with ‘2ADD’
or ‘4ADD’. The destination operand is necessarily a scalar (not a SIMD array).

Examples of this last rule are these instructions:

PREDSUM.HS = P REDSUM .HS
PDIFSUMAU.B = P {DIF + SUM + Accum} U .B

The V extension has several instructions that reduce across all vector elements, with names of the
form VRED ⟨op⟩.VS for varioius reduction operations ⟨op⟩. One instance of these instructions is
VREDSUM.VS for summing all elements of a vector.

3.7 Packed-SIMD instructions with exchanged elements of second operand

The P extension has a few packed-SIMD instructions that swap adjacent elements of the second source
operand before then performing a function of a kind already covered by earlier subsections.

Packed-SIMD instructions with exchanged elements of second operand: If a packed-SIMD
instruction first swaps pairs of elements of the second source operand before performing the rest
of its computation, the instruction name has the usual form for a packed-SIMD instruction but
with an ‘X’ added to the end to visually represent the swapping of elements, like so:

P ⟨operations⟩ . ⟨S⟩X

The following are examples of instructions of this type:

PM2ADDA.HX = P {widening Mul + 2-ADD + Accum} .HX
PM2SUB.HX = P {widening Mul + 2-SUB} .HX

Apart from the ‘X’ at the end, the names of these two examples follow the rules specified in Section 3.6
for instructions with horizontal addition or subtraction.

There is a special category of instructions that swap pairs of elements of the second source operand
and then perform additions in half the element positions and subtractions in the other half. All forms
of these instructions are listed in Table 2.

Name Function at odd positions Function at even positions

PAS.⟨S⟩X addition subtraction
PSA.⟨S⟩X subtraction addition
PSAS.⟨S⟩X saturating addition saturating subtraction
PSSA.⟨S⟩X saturating subtraction saturating addition
PAAS.⟨S⟩X averaging addition averaging subtraction
PASA.⟨S⟩X averaging subtraction averaging addition

Table 2: Packed-SIMD instructions that peform additions in half the element positions and subtractions
in the other half. The element width ⟨S⟩ can be either ‘H’ or ‘W’.

10

	Elemental operation names
	Combining and augmenting operation names
	Conventions for packed-SIMD instruction names
	Basic packed-SIMD instructions
	Packed-SIMD instructions with a scalar second operand
	Widening and narrowing packed-SIMD instructions
	Double-wide packed-SIMD instructions
	Mixed-width packed-SIMD instructions
	Packed-SIMD instructions with horizontal addition/subtraction
	Packed-SIMD instructions with exchanged elements of second operand

